

Orckestra, Europe

Nygårdsvej 16

DK-2100 Copenhagen

Phone +45 3915 7600

www.orckestra.com

An Advanced Guide to Data Types

2017-02-14

Page 2 of 55 An Advanced Guide to Data Types

Contents

1 INTRODUCTION .. 4

1.1 Who Should Read This Guide? 4
1.2 Getting Started 5
1.3 Terms and Abbreviations 5

2 LOCALIZING DATA TYPES .. 6

2.1 Enabling Localization on Data Types 6
2.1.1 Localizing Existing Data Types 6
2.1.2 Localizing Data Types Being Created 7

2.2 Localizing Data Items 9
2.3 Troubleshooting 9

3 LOCALIZING FORMS .. 10

3.1 Creating Resource File for Main Language 10
3.2 Creating Resource Files for Other Languages 11
3.3 Translating Strings in Localized Resource Files 11
3.4 Using Resource Strings in Data Type Field Properties 11
3.5 Troubleshooting 12

4 USING ADVANCED WIDGETS ... 13

4.1 TextBox 14
4.2 TextArea 14
4.3 CheckBox 15
4.4 BoolSelector 15
4.5 VisualXhtmlEditor 16
4.6 DataIdMultiSelector 16
4.7 Selector (String) 17
4.8 ImageSelector 20
4.9 MediaFileSelector 21

5 EDITING FORM MARKUP ... 24

5.1 Editing Form Markup 24
5.1.1 XHTML Validation 24
5.1.2 Form Markup File 24

5.2 Overview of Form XML Structure 25
5.2.1 Required XML Namespaces 25
5.2.2 Default Form XML Structure 25
5.2.3 Root Element in Layout Section 26
5.2.4 Widget Elements 26
5.2.5 Common Attributes 27
5.2.6 Initializing Widgets 27
5.2.7 Binding Fields to Widgets 28
5.2.8 Commonly Used Widget Elements 29
5.2.9 Specific Widget Element Attributes 30
5.2.10 Other Widget Elements 33

5.3 Customizing TextBox View 33
5.4 Using Container Elements 34
5.4.1 FieldGroup Element 34
5.4.2 PlaceHolder Element 34
5.4.3 TabPanels Element 35

5.5 Customizing Form Layout 35

Page 3 of 55 An Advanced Guide to Data Types

5.5.1 Grouping Fields between Multiple Field Groups 35
5.5.2 Grouping Fields on Multiple Tabs 36

5.6 Example of Editing Form Markup 37

6 APPLYING VALIDATION RULES TO FIELDS ... 44

6.1 Adding Validation Rule to Field 44
6.1.1 Editing Validation Rule 46
6.1.2 Deleting Validation Rule 46

6.2 Overview of Validation Rules 47
6.2.1 DateTime 47
6.2.2 Decimal 47
6.2.3 GUID 47
6.2.4 Int32 47
6.2.5 String and Data References 48

6.3 Example of Using Validation Rules 48
6.4 Making Validation Messages on Forms User-Friendly 49

7 CREATING DATA TYPES THAT REFERENCE OTHER DATA TYPES 50

7.1 Creating Referenced Data Types 50
7.2 Creating Referencing Data Types 50
7.3 Grouping by Data Reference Fields 51

8 TEST YOUR KNOWLEDGE .. 54

8.1 TASK 1 54
8.2 TASK 2 54
8.3 TASK 3 54
8.4 TASK 4 54
8.5 TASK 5 54
8.6 TASK 6 55
8.7 TASK 7 55

Page 4 of 55 An Advanced Guide to Data Types

1 Introduction

Custom content types called “data types” here are an essential part of C1 CMS. When using
data types, it is possible to keep and access data required for a website in a structured way,
similar to storing data in database tables.

If you are new to C1 CMS data types, we recommend that you first read A Guide to Creating
Data Types, which introduces you to the basics of data types.

This guide focuses on more advanced topics related to data types as well as forms based
on these data types.

It includes topics about localizing data types and input forms as well as customizing the data
item editor by editing a data type’s form markup.

Besides, it discusses ways of ensuring appropriate values in the input fields with validation
rules and lists of predefined values supplied by referenced data types.

Widgets are presented in a greater detail and some practical information is given on
grouping data items into tree-like structures.

1.1 Who Should Read This Guide?

This guide is intended for designers and developers who want to learn how to effectively
edit and use data types in web design and web development in C1 CMS.

We assume that you know how to work in the Data perspective of C1 CMS and have
permissions to create and edit data types. We also assume that you have an idea of
structured data such as tables in databases.

Some topics might require that you should know XML and have an idea of .NET resource
files.

http://docs.c1.orckestra.com/GuideToCreatingDatatypes
http://docs.c1.orckestra.com/GuideToCreatingDatatypes

Page 5 of 55 An Advanced Guide to Data Types

1.2 Getting Started

Getting started with advanced topics on data types implies that you learn one or more
related activities.

Getting Started

Activity Chapter or section

How to localize data types and their data items Localizing Data Types

How to localize forms to match the language used on
your website

Localizing Forms

How to use and fine-tune advanced widgets for data type
fields

Using Advanced Widgets

How to customize the data item forms by editing the form
markup

Editing Form Markup

How to ensure that the user should enter proper values
by using validation rules on fields

Applying Validation Rules to Fields

How to ensure that the user should enter proper values
by using data types as lists of predefined values

Creating Data Types That
Reference Other Data Types

How to present data items hierarchically by grouping
them by data reference fields

Grouping by Data Reference
Fields

In the following few chapters, you will learn more about these and other activities.

1.3 Terms and Abbreviations

The following is the list of terms and their definitions used throughout this guide.

Terms and Definitions

Term Definition

Data type An entity used to store and reuse structured data in C1 CMS

Validation rule A criterion that ensures that input data meets the criterion and is thus
correct

Form markup An XML-based representation of the editor form used in C1 CMS to
allow adding or editing data items

Widget In C1 CMS, a control used for getting input values from users and
storing them in corresponding data type fields

Page 6 of 55 An Advanced Guide to Data Types

2 Localizing Data Types

Localization of data types follows the general localization rules in C1 CMS. Localization of
forms created with Forms Renderer has its specifics. In the following sections we will cover
both types of localization in detail.

Global data types and page datafolders are localized in the same manner; page metatypes
are localized as part of localization of pages when used on the latter.

The focus of this guide is global data types; that is why the following procedures will be
illustrated with these data types.

Localizing data types in C1 CMS implies localizing the data items these data types contain.
If you add an item to a localized data type, you can switch to the other language in C1 CMS,
translate the item and use it on its own on the localized website from now on.

The item in the main language and the item in the language you localize to will now co-exist.
Hence, changes in the item in one language will not affect the item in the other language.

Before you can localize data items, you should enable localization on data types.

2.1 Enabling Localization on Data Types

To enable localization on data types and localize data items, at least two languages must be
added to C1 CMS.

By default, data types created in C1 CMS are not localizable. Enabling localization on
existing data types is different from enabling localization on data types being created.

2.1.1 Local izing Ex is t ing Data Types

To enable localization on existing data types:

1. Select the data type.
2. On the toolbar, click Enable Localization.

Figure 1: Enable Localization button on the toolbar

3. In the Enable Localization wizard, select the “language” (locale) you want to
“move” existing data items to.

Page 7 of 55 An Advanced Guide to Data Types

Figure 2: Move existing data to a proper locale

When you enable localization on a data type, you should choose where to keep the
existing data items. We recommend that you keep (“move”) the data items in the
language you have created them in, which is often the default language in the
system.

4. Click Next and then click Finish to confirm your settings.

Now the data type has been localized, and the button on the toolbar for this data type is
replaced with the Disable Localization button.

Figure 3: Disable Localization button on the toolbar

Before you go on to localize data items, learn how you can localize a data type you are
creating.

2.1.2 Local izing Data Types Being Created

You can also enable localization on a data type while creating it:

1. In the Data perspective, select Global data types and click Add Datatype on the
toolbar.

2. On the Settings tab, place a check mark in the Is localizable data check box.

Page 8 of 55 An Advanced Guide to Data Types

Figure 4: Localizing a data type being currently created

3. Continue to create your data type.

Alternatively, you can first create your data type and then enable localization as described in
the previous procedure.

Page 9 of 55 An Advanced Guide to Data Types

2.2 Localizing Data Items

Localization of data items is similar to localization of web pages. Before you localize an
item, you should make sure that the item has the published status.

To localize a data item:

1. Switch to the language you localize to.
2. Expand the data type with the target item.
3. Select the item and click Translate on the toolbar. The item editor form opens in the

working area.
4. Replace the values in the original language with those in the target language where

necessary.
5. Save the item.
6. Repeat Steps 3-5 for as many items as you need.

2.3 Troubleshooting

 If there is no Enable Localization on the toolbar or in the context menu of a data
type, make sure that you have at least two languages added in the system.

 If the item you want to localize is grayed (disabled), make sure you have the item
published in the original language. This might be the case if the data type requires
that items should be manually published.

 If you have created the item in Language A, and it does not exist in Language B,
make sure that the translation language is set to Language A (View >
Translation > From language). In other words, to see the item created in one
language, you should select the latter as the translation language when switching
to another language.

Page 10 of 55 An Advanced Guide to Data Types

3 Localizing Forms

When you localize your website (for example, from English to Danish), by default, the input
forms rendered by Forms Renderer will only display their labels and validation messages in
the main language (for example, English).

To have the form labels and validation messages in the language of the localized website,
you should:

1. Create a .NET resource file for each language used.
2. Translate corresponding strings in each file.
3. Set specific properties of the data type used by the Forms Renderer to these

strings.

Note: The system validation messages that appear when validation fails on the user’s input
in the field cannot be localized. However, you can have them automatically replaced with
your user-friendly messages by providing Help texts for the data type fields used in your
forms. These user-friendly messages can be localized.

3.1 Creating Resource File for Main Language

To create a resource file for the main language:

1. Open your website in Visual Studio.
2. Open or add the App_GlobalResources folder in the root of your website.
3. Add a new .NET resource file (.resx) there. (Right-click App_GlobalResources in

Visual Studio’s Solution Explorer > Add > Resource File).
4. In Visual Studio’s Resource Editor add as many strings as you need for localization.

Alternatively, you can create the file locally with the minimum XML (see below) or already
with the localized strings and upload it to the App_GlobalResources folder.

1. Locally create a .NET resource file (.resx) and name it something appropriate, for
example, “MainContactForm.resx”.

2. Copy the following XML into this file:

<root>

 <resheader name="resmimetype">

 <value>text/microsoft-resx</value>

 </resheader>

 <resheader name="version">

 <value>2.0</value>

 </resheader>

 <resheader name="reader">

 <value>System.Resources.ResXResourceReader, System.Windows.Forms,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>

 </resheader>

 <resheader name="writer">

 <value>System.Resources.ResXResourceWriter, System.Windows.Forms,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089</value>

 </resheader>

 <!-- strings go here -->

 <data name="NameLabel" xml:space="preserve">

 <value>Name</value>

 <comment>This is a sample comment, not displayed on the site. This is

optional.

 </comment>

 </data>

 <data name="NameHelp" xml:space="preserve">

 <value>Enter your first and last name.</value>

 </data>

</root>

Listing 1: .NET resource file content

Page 11 of 55 An Advanced Guide to Data Types

This file will serve as a resource file for your main language. When properly
configured, the string values in this file will appear as labels and validation
messages on forms in the main language.

3. Edit the file and add as many <data> elements as you need for each string you
want to localize.

As the file is XML-formatted, you can edit it in any XML editor. We recommend that
you use Visual Studio to edit this file because it has a more convenient built-in
resource editor.

As you can see in the above XML, each string is represented by a <data> element,
the name attribute of which specifies the name of the string you will refer to when
localizing forms. As the name suggests, the <value> element specifies the value of
this string, i.e. the string itself, which the user will see on a form.

4. Log into the CMS Console.
5. From the System perspective, expand the root of the website (/) and then, open or

create the App_GlobalResources folder in the root.
6. Upload your resource file there. (Select App_GlobalResources, click Upload File

on the toolbar and follow the steps in the wizard.)

Important! Please avoid creating an empty .resx file in this folder because it may cause an
error on your website. Either create it in Visual Studio, or upload a local file with valid XML.

3.2 Creating Resource Files for Other Languages

For each language the website is localized to, you should create a localized copy of the
resource file in the main language.

Use the following file naming pattern for each localized resource file:

<resource_name>.<culture_name>.resx

For example, if you have a Danish version of your English website, its resource file must be
named “MainContactForm.da-DK.resx”.

For information on culture names, please see https://msdn.microsoft.com/en-
us/library/system.globalization.cultureinfo(vs.71).aspx.

3.3 Translating Strings in Localized Resource Files

Once you have created localized resource files, you should translate the strings.

For this, you should edit the file and replace the string values in the main language with the
strings in the target language.

Note: Changes in the App_GlobalResources folder make ASP.NET (and hence C1 CMS)
restart, which can make the application feel unresponsive right after updates.

3.4 Using Resource Strings in Data Type Field Properties

Once your resource files for the main and other languages are ready, you should use the
resource strings in the Label and Help properties of the data type fields.

As the name suggests, the Label’s value is used in the labels of forms.

If provided, the Help text is used instead of the system validation messages for fields.

The reference to a resource string in those properties must comply with a specific format:

https://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx
https://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.71).aspx

Page 12 of 55 An Advanced Guide to Data Types

${Resource, Resources.<resource_file_name>.<string_name>}

<resource_file_name> stands for the name of the resource file without the culture name
(e.g. “en-us”) and extension (“.resx”)

 <string_name> stands for the string name attached to the resource file name
and separated from the resource file name with a period (“.”).

For example, if you want to refer to the string named NameLabel in the
MainContactForm.da-dk.resx resource file, you should build the following value:

${Resources.MainContactForm.NameLabel}

To specify resource strings for labels and messages on forms:

1. Edit the data type used by the Forms Renderer for the form you want to localize.
2. Open the Fields tab and select a field under the Datatype fields.
3. Refer to the string from the resource file in proper format in the field’s Label

property, for example:

${Resource, Resources.MainContactForm.NameLabel}

4. Likewise, refer to the corresponding resource string in the Help property of the field,
for example:

${Resource, Resources.MainContactForm.NameHelp}

Figure 5: Using resource strings in Label and Help properties

5. Repeat Steps 3-4 for the Label and Help properties of each data type field.

Now you can open a page with a form on your localized website and see the labels and
messages translated into the language used.

3.5 Troubleshooting

If you are experiencing an ASP.NET error screen (for example, “your resource cannot be
located”), make sure that you have:

 Upgraded to the latest version of the Forms Renderer add-on.

 Correctly named the file for the main language (without the culture name) and
other languages (with the culture name)

 Correctly referred to the resource file and the string name in the data type field
properties (Label and Help)

http://docs.c1.orckestra.com/Composite.Forms.Renderer

Page 13 of 55 An Advanced Guide to Data Types

4 Using Advanced Widgets

Each type of a data type field has one or more widgets associated with it. If more than one
widget can be used with a field, one of them is assigned to the field by default.

Some widgets have no parameters and can be used out-of-the-box when assigned. Other
widgets have parameters and can be therefore configured.

Normally, the configurable widgets have reasonable default values for their parameters. You
can thus use them out-of-the-box as well. However, if you have some specific requirements,
you can override these defaults.

The following widgets have no parameters:

 DateSelector

 DateTimeSelector

 Selector (data reference)

 Optional Selector

 MediaFileFolderSelector

The configurable widgets are as follows:

 TextBox

 TextArea

 CheckBox

 VisualXhtmlEditor

 ImageSelector

 MediaFileSelector

 BoolSelector

 DataIdMultiSelector

 Selector (string)

Note: You can have a quick overview of all the widgets in A Guide to Creating Data Types.

In this chapter we will focus on the configurable widgets. You will learn in detail how to set
up parameters of these widgets.

Each parameter is listed by its name used in the Form XML (“XML Name”), which may be
different from its name visible to the user in the Field Widget Configuration window (“GUI
Name”).

Each parameter has a short description provided and its type specified. It is indicated
whether the parameter is required or optional. Its possible values and its default value are
specified.

Page 14 of 55 An Advanced Guide to Data Types

4.1 TextBox

The TextBox widget has allows you to choose whether the text entered will be spell-
checked (Firefox only) based on the current language of the website. You should explicitly
disable spell checking on fields that contain e-mails, code values etc. not suitable for spell
checking.

SpellCheck

XML Name SpellCheck

GUI Name Spell check

Type Boolean

Required No

Description If true (“Allow spell checking”), the text entered in the field will be spell-
checked (Firefox and IE10 only).

Possible values True (“Allow spell checking”) / False (“Do not allow spell checking”)

Default value True

4.2 TextArea

The TextArea widget has allows you to choose whether the text entered will be spell-
checked (Firefox only) based on the current language of the website. You should explicitly
disable spell checking on fields that contain e-mails, code values etc. not suitable for spell
checking.

SpellCheck

XML Name SpellCheck

GUI Name Spell check

Type Boolean

Required No

Description If true (“Allow spell checking”), the text entered in the field will be spell-
checked (Firefox and IE10 only).

Possible values True (“Allow spell checking”) / False (“Do not allow spell checking”)

Default value True

Page 15 of 55 An Advanced Guide to Data Types

4.3 CheckBox

The CheckBox widget has a label to its left copied from its corresponding property. You can
also specify the label for the check box item. It will appear to its right.

ItemLabel

XML Name ItemLabel

GUI Name Sub label

Type String

Required No

Description Text to the right of the check box on a form

Possible values Any valid string that can serve as a check box item label

Default value (none)

4.4 BoolSelector

The BoolSelector widget always specifies two options to choose from, which read “True”
and “False” by default. You can override these defaults by modifying its corresponding
parameters.

TrueLabel

XML Name TrueLabel

GUI Name True label

Type String

Required Yes

Description A label that describes one of the two possible options. Use this
parameter to specify a custom label for the True option.

Possible values Any valid string that can serve as a label for an option

Default value True

Page 16 of 55 An Advanced Guide to Data Types

FalseLabel

XML Name FalseLabel

GUI Name False label

Type String

Required Yes

Description A label that describes one of the two possible options. Use this
parameter to specify a custom label for the False option.

Possible values Any valid string that can serve as a label for an option

Default value False

4.5 VisualXhtmlEditor

The VisualXhtmlEditor widget allows the user to create and edit XHTML formatted content
for the field. It comes with a predefined set of class names used for formatting XHTML
elements (“common”). If you have defined your own set of class names, you can specify it
instead.

ClassConfigurationName

XML Name ClassConfigurationName

GUI Name Class configuration name

Type String

Required No

Description A string used to configure the visual editor and offer the editor a
special set of class names for formatting XHTML elements.

Possible values Any valid string that serve as the name of a predefined set of class
names

Default value common

4.6 DataIdMultiSelector

With the DataIdMultiSelector widget you can use items in a data type as options in a list to
choose from. Since the widget has two views – verbose for longer lists and compact for
shorter ones, you can configure how to present the options by selecting the proper view.

Page 17 of 55 An Advanced Guide to Data Types

OptionsType

XML Name OptionsType

GUI Name Data type to select from

Type Type

Required Yes

Description A data type whose items will serve as the list of options to choose
from

Possible values Any valid data type

Default value (none)

CompactMode

XML Name CompactMode

GUI Name Compact UI

Type Boolean

Required No

Description If true (“Compact”), a compact representation of long option lists will
be used; otherwise, the full representation.

Possible values True (Compact) / False (Verbose)

Default value False (Verbose)

4.7 Selector (String)

Unlike the Selector widget used with other field types, the Selector widget used with the
String type has a number of parameters to configure.

First of all, you can specify the option list to choose from by using a specific function that will
return a simple enumerable list of such options (for example, Composite.Utils.String.Split)
or an object with multiple properties (fields), for example a data type.

If the function returns an object with multiple properties, you should also choose which of
the properties will supply values for options in the list (for example, “ID”) and which will
supply labels for options in the list (for example, “Name”).

You can also make a selection of an option in a list required or optional. By allowing multiple
selections and selecting the Compact or Verbose mode, you can change the way the
options are presented to the user.

Page 18 of 55 An Advanced Guide to Data Types

Options

XML Name Options

GUI Name Options

Type IEnumerable (simple lists), Dictionary

Required Yes

Description A list of elements to use as options.

Possible values A call to a function that can return a list of options

Default value (none)

KeyFieldName

XML Name KeyFieldName

GUI Name Source key field name

Type String

Required No

Description A name of the property in the option source, whose values will be
used as key values.

In other words, if your option source returns a list of objects or
XElements, this field specifies the name of the field (property) to use
for key values.

Leave this field empty to use the source option value as a string.

Possible values A valid string that specifies the name of the property in the option
source, or an empty string (none)

Default value (none)

Page 19 of 55 An Advanced Guide to Data Types

LabelFieldName

XML Name LabelFieldName

GUI Name Source key field label

Type String

Required No

Description A name of the property in the option source, whose values will be
used as labels for options in the list.

In other words, if your option source returns a list of objects or
XElements, this field specifies the name of the field (property) to use
for labels.

Leave this field empty to use the source option value as a string.

Possible values A valid string that specifies the name of the property in the option
source, or an empty string (none)

Default value (none)

Required

XML Name Required

GUI Name Selection required

Type Boolean

Required No

Description If true, the user is forced to select a value in the list; otherwise, no
selection is allowed (“<NONE>”).

This parameter has no effect if the Multiple selection parameter is
set to True.

Possible values True / False

Default value True

Page 20 of 55 An Advanced Guide to Data Types

Multiple

XML Name Multiple

GUI Name Multiple selection

Type Boolean

Required No

Description If true, the user can select none, one or more than one value in the
list. The selected values will be joined in a comma-separated string
like 'A,B,C'.

If set to true, this feature disables the Selection required parameter. If
set to true, it also changes the view of the widget from drop-down list
to the compact or verbose list (as defined in the Compact mode
parameter).

Possible values True / False

Default value False

Compact

XML Name Compact

GUI Name Compact mode

Type Boolean

Required No

Description If true, the UI element will be presented in a compact view; otherwise,
the verbose view is used.

This parameter has effect only when the Multiple selection
parameter is set to True; otherwise, a drop-down list is used.

Possible values True (Compact) / False (Verbose)

Default value False (Verbose/Show all options)

4.8 ImageSelector

By default, the ImageSelector widget allows the user to select the images from the entire
Media Archive (“All Media Files”).

To narrow the scope, you can choose a folder, from which the images will be only selected.
You can also configure the widget so that the user can choose not to select any image in
the list (“<NONE>”).

Page 21 of 55 An Advanced Guide to Data Types

MediaFileFolderReference

XML Name MediaFileFolderReference

GUI Name Image folder

Type DataReference<C1 Media Folder>

Required Yes

Description A media folder to choose images from. It also includes images from all
subfolders.

Possible values Any valid path to a media folder

Default value All Media Files

 Required

XML Name Required

GUI Name Selection required

Type Boolean

Required No

Description If true, selecting an image will be required; otherwise, optional
(“<NONE>”).

Possible values True / False

Default value True

4.9 MediaFileSelector

By default, the MediaFileSelector widget allows the user to select the media from the entire
Media Archive (“All Media Files”).

To narrow the scope, you can choose a specific folder, from which the media files will be
only selected. You can further narrow the list of available media files by filtering the media
files by their extensions as well as by indicating whether to include files from subfolders.

You can also configure the widget so that the user can choose not to select any media file in
the list (“<NONE>”).

Page 22 of 55 An Advanced Guide to Data Types

MediaFileFolderReference

XML Name MediaFileFolderReference

GUI Name Media Folder

Type DataReference<C1 Media Folder>

Required Yes

Description A media folder to choose files from.

Possible values Any valid path to a media folder

Default value All Media Files.

FileExtensionFilter

XML Name FileExtensionFilter

GUI Name File extension filter

Type String

Required No

Description This parameter limits the list to files which have the specified
extension.

Possible values A string that specifies any valid file extension

Default value (none)

IncludeSubfolders

XML Name IncludeSubfolders

GUI Name Include Subfolders

Type Boolean

Required No

Description If true, files from subfolders will be included in the list; otherwise, only
files in the specified folder will be listed

Possible values True / False

Default value True

Page 23 of 55 An Advanced Guide to Data Types

Required

XML Name Required

GUI Name Selection required

Type Boolean

Required No

Description If true, selecting a media file will be required; otherwise, optional
(“<NONE>”).

Possible values True / False

Default value True

Page 24 of 55 An Advanced Guide to Data Types

5 Editing Form Markup

When a user adds an item to a data type, C1 CMS automatically generates a XML-
formatted form for entering values. By default, the input form in C1 CMS presents all the
defined fields with matching widgets in an untitled field group box.

You can however customize the view of this form by editing its markup (XML). For example,
you can make a text box read-only, add the title to a group box, group the widgets between
two or more group boxes or tabs, or even use custom widgets for the fields defined in the
data type.

In the following few sections you will learn how to edit a form’s markup and modify the
form’s view.

5.1 Editing Form Markup

You can change a data item form’s view and behavior by editing its markup (XML).

To edit the form markup:

1. Select a data type.
2. On the toolbar, click Edit Form Markup. The form markup opens in XHTML Source

Editor in the working area.
3. Edit the XML contents. (The form XML structure and editing basics will be

discussed shortly.)
4. Save the form markup.

5.1.1 XHTML Val idat ion

The built-in XHTML validation mechanism will protect you from making mistakes while
editing the form markup.

You will not be able to save poorly-formed XML. A message will inform you of an error if you
try to save the form markup.

You can also force validation of the XML by clicking Format on the Source Editor’s toolbar.
Again, a message will inform you of any error in the XML.

Normally, the message describes what is wrong in the content and specifies the line and the
position where the poorly-formed XML starts. Hence, you can easily locate and correct the
error.

5.1.2 Form Markup F i le

When you save the modified form markup for the first time, a corresponding file is created
on your hard disk as:

~/App_Data/Composite/DynamicTypeForms/<Namespace>/<DatatypeName>.xml

<Namespace> stands for the namespace of the data type

 <DatatypeName> stands for the name of the data type

For example, if you have a data type called Samples.Users, the file with modified markup
can be found at:

~/App_Data/Composite/DynamicTypeForms/Samples/Users.xml

You can directly edit this file in an XML editor of your choice.

Page 25 of 55 An Advanced Guide to Data Types

Important: Once the form markup file is generated, any changes to the data type will not be
automatically synchronized to the form markup. You should update your form markup
manually to match the changes. For example, if you have added a new field to the data
type, it will not appear in the form markup, you should add this field manually as described
in this chapter.

5.2 Overview of Form XML Structure

The auto-generated form markup has a default XML-based structure which only differs from
form to form in fields and widgets. The elements used in the markup have their specific XML
namespaces and defined in standard XML Schema definition files.

Some elements in the form markup are required, while others are optional.

Let’s first review the XML namespaces required for elements in the form markup and then
have a look at the default form’s XML structure.

5.2.1 Required XML Namespaces

The form markup must specify a number of XML namespaces for XML elements to be valid
and XML itself to be well-formed.

The following namespaces are present in the original form markup by default:

<cms:formdefinition

xmlns:cms="http://www.composite.net/ns/management/bindingforms/1.0"

xmlns="http://www.composite.net/ns/management/bindingforms/std.ui.controls.

lib/1.0"

xmlns:f="http://www.composite.net/ns/management/bindingforms/std.function.l

ib/1.0" >

<!-- skipped -->

</cms:formdefinition>

Listing 2: Required XML namespaces

Important: You should never remove these namespaces.

You can access and view the XML definitions by typing the following URL in your browser:

http://localhost/Composite/schemas

replacing localhost with the name of the server where your C1 CMS is running

If you use elements not covered by the above namespaces, you should specify additional
namespace that will do. This might be the case with custom widgets.

5.2.2 Default Form XML Structure

Each form has the root element <cms:formdefinition> and two child elements:
<cms:bindings> and <cms:layout>.

Bindings Section

Within the <cms:bindings> element, data type fields are listed, which are or can be bound
to widgets.

Each field is introduced in the <cms:binding> element and has 3 attributes to set:

 name: (Required) It specifies the name of the field and corresponds to a data
type field’s Name property in the GUI

 type: (Required) It specifies the type of the field and corresponds to the Field
type property

Page 26 of 55 An Advanced Guide to Data Types

 optional: (Optional) It indicates whether the binding is optional or required.

<cms:formdefinition

xmlns:cms="http://www.composite.net/ns/management/bindingforms/1.0"

xmlns="http://www.composite.net/ns/management/bindingforms/std.ui.controls.

lib/1.0"

xmlns:f="http://www.composite.net/ns/management/bindingforms/std.function.l

ib/1.0">

 <cms:bindings>

 <cms:binding name="Id" type="System.Guid" optional="true" />

 <cms:binding name="Name" type="System.String" optional="true" />

 <cms:binding name="Choice" type="System.Boolean" optional="true" />

 </cms:bindings>

 <!-- skipped -->

</cms:formdefinition>

Listing 3: Sample elements in <cms:bindings>

Important: The <cms:bindings> section is filled by C1 CMS automatically based on the
data type used with this form. You are not supposed to change anything here.

The fields listed here are referred to in the <cms:layout> section when used in or bound to
widgets.

Layout Sect ion

The layout of the form is handled in the <cms:layout> element. This is where you can add,
modify or remove widget elements and change the layout of the widgets on the editor form
in general.

The <cms:layout> element has two optional attributes, also mirrored in its respective child
elements:

 label (<cms:label>): specifies the label of the form, which appears as a title on
the tab in the working area. If no value is provided, the name of the data type is
displayed instead.

 iconhandle (<cms:iconhandle>): specifies the icon to use with the form’s label.
If no value is provided, the default icon is used.

In the form markup, the label is set to the data type field, which is configured to serve as a
title field in lists.

5.2.3 Root Element in Layout Sect ion

Within the <cms:layout> element, a root element must be defined, which will serve as a
container for other elements representing widgets or other containers.

By default, C1 CMS places all the elements under the <FieldGroup> element that serves
as a container and the root element here. However, you can use other container elements
available for the form instead of <FieldGroup>.

5.2.4 W idget Elements

Under the root element in the <cms:layout> section, C1 CMS places the widget elements
binding them to the data type fields specified in the <cms:bindings> section.

Note: Along with widget elements you can insert other elements in this section such as
container elements and functions. In this guide we will only focus on widgets and containers.

As a rule, a widget element has a number of attributes that in most cases match the
widget’s properties you can set for a data type field in the GUI. However, some widgets may
have attributes that can be set only in the form markup.

Page 27 of 55 An Advanced Guide to Data Types

The attributes are normally mirrored in respective child elements, which are more preferable
for use in a number of cases. For example, you can set the Help text for a widget by using
the Help attribute of the widget element:

<TextBox Label="Name" Help="Enter your name here" />

Listing 4: Setting the Help property in the Help attribute

When you, however, bind the widget’s property to a data type field (“Text”, in the example
below), you will most likely use its corresponding child element. In the example below, it is
accounted for by using another element for the value:

<cms:formdefinition

xmlns:cms="http://www.composite.net/ns/management/bindingforms/1.0"

xmlns="http://www.composite.net/ns/management/bindingforms/std.ui.controls.

lib/1.0"

xmlns:f="http://www.composite.net/ns/management/bindingforms/std.function.l

ib/1.0">

 <!-- skipped -->

 <cms:layout>

 <!-- skipped -->

 <TextBox Label="Name" Help=" Enter your name here ">

 <TextBox.Text>

 <cms:bind source="Name" />

 </TextBox.Text>

 </TextBox>

 <!-- skipped -->

 </cms:layout>

</cms:formdefinition>

Listing 5: Setting the Text property in the Text child element

5.2.5 Common Att r ibutes

Most widget or container elements have at least two common attributes: Label and Help.

As the names suggest, these attributes specify the label and the help text for a widget or a
container. They correspond to the Label and Help properties of a data type field specified in
the GUI.

5.2.6 In i t ia l izing W idgets

Each widget that has a bindable property can be initialized with a specific value.

3 options are available for simple values:

 Specifying a value in the corresponding element’s attribute

 Placing a value between a widget element’s start and end tags and thus referring
to the bindable property implicitly

 Placing a value between the start and end tags of a widget’s bindable property
element (explicitly)

For instance, you have a TextBox widget named and labeled “Country” to be initialized with
“Denmark” as a value. The TextBox widget has a bindable property called Text available
both as an attribute and as a child element. Your options could be:

<TextBox Label="Country" Text="Denmark" />

Listing 6: Initializing the value in an attribute (Option 1)

<TextBox Label="Country">Denmark</TextBox>

Listing 7: Initializing the value of the bindable property implicitly (Option 2)

<TextBox Label="Country">

Page 28 of 55 An Advanced Guide to Data Types

 <TextBox.Text>Denmark</TextBox.Text>

</TextBox>

Listing 8: Initializing the value of the bindable property explicitly (Option 3)

You can also use a value that the corresponding data type field might have, especially if the
field has a default value. In this case, you should use the <cms:read /> element and specify
the field’s name in its source attribute. You can use the <cms:read /> element in the last 2
options (as a child element).

For example, your data type has a field named “Country” and you want to set the widget to
whatever the value is in this field by default. You can do one of the following:

<cms:formdefinition

xmlns:cms="http://www.composite.net/ns/management/bindingforms/1.0"

xmlns="http://www.composite.net/ns/management/bindingforms/std.ui.controls.

lib/1.0"

xmlns:f="http://www.composite.net/ns/management/bindingforms/std.function.l

ib/1.0">

 <!-- skipped -->

 <cms:layout>

 <!-- skipped -->

 <TextBox Label="Country">

 <cms:read source="Country" />

 </TextBox>

 <!-- skipped -->

 </cms:layout>

</cms:formdefinition>

Listing 9: Initializing the value with <cms:read> implicitly (Option 2)

<cms:formdefinition

xmlns:cms="http://www.composite.net/ns/management/bindingforms/1.0"

xmlns="http://www.composite.net/ns/management/bindingforms/std.ui.controls.

lib/1.0"

xmlns:f="http://www.composite.net/ns/management/bindingforms/std.function.l

ib/1.0">

 <!-- skipped -->

 <cms:layout>

 <!-- skipped -->

 <TextBox Label="Country">

 <TextBox.Text>

 <cms:read source="Country" />

 </TextBox.Text>

 </TextBox>

 <!-- skipped -->

 </cms:layout>

</cms:formdefinition>

Listing 10: Initializing the value with <cms:read> explicitly (Option 3)

When C1 CMS auto-generates a form, it normally uses Option 3 - the <cms:read /> element
to bind a data type field to a matching widget.

5.2.7 Binding F ields to W idgets

When you bind a data type field to a widget, not only is the value of the field copied to the
widget but also the value entered by the user in the widget is copied to the data type field.

To bind a data type field to the widget property, you should use the <cms:bind /> element.

<cms:formdefinition

xmlns:cms="http://www.composite.net/ns/management/bindingforms/1.0"

xmlns="http://www.composite.net/ns/management/bindingforms/std.ui.controls.

lib/1.0"

xmlns:f="http://www.composite.net/ns/management/bindingforms/std.function.l

ib/1.0">

Page 29 of 55 An Advanced Guide to Data Types

 <!-- skipped -->

 <cms:layout>

 <!-- skipped -->

 <TextBox.Text>

 <cms:bind source="Name" />

 </TextBox.Text>

 <!-- skipped -->

 </cms:layout>

</cms:formdefinition>

Listing 11: Binding a filed to a widget’s property

In the source attribute of this element, you specify the field you bind to the widget. One field
can be only bound to one widget. The field bound to a widget must be listed in the
<cms:bindings> section.

5.2.8 Commonly Used W idget Elements

Each widget used with a data type field is represented with widget elements in the form
markup.

To see definition of all the available elements:

1. Type http://localhost/Composite/schemas in your browser replacing localhost
with the name of the server where your C1 CMS is running.

2. Click the namespace URL
http://www.composite.net/ns/management/bindingforms/std.ui.controls.lib/1.0

Page 30 of 55 An Advanced Guide to Data Types

The following is the list of widgets matched against their widget elements:

Widgets Matched Against Elements

Field Widget Field Type Element in Form XML

TextBox String, Integer, Decimal, GUID <TextBox />

TextArea String <TextArea />

DateSelector Date <DateSelector />

DateTimeSelector Date <DateTimeSelector />

CheckBox Boolean <CheckBox />

BoolSelector Boolean <BoolSelector />

VisualXhtmlEditor String <InlineXhtmlEditor />

DataIdMultiSelector String <MultiKeySelector />

Selector String <KeySelector />

Selector String <MultiKeySelector />

ImageSelector Data Reference: C1 Image <KeySelector />

MediaFileSelector Data Reference: C1 Media File <KeySelector />

MediaFolderFileSelector Data Reference: C1 Media Folder <DataReferenceSelector />

Selector Data Reference (all types) <KeySelector />

OptionalSelector Data Reference (all types) <KeySelector />

As you can see in the table above, many data type field widgets are implemented with fewer
widget elements configured in the properties to be widget-specific.

For example, TextBox widgets for different field types are implemented with the same
<TextBox> element and differ in the value of its implicit Type attribute. You will learn about
using the TextBox’s Type attribute shortly.

Various selectors are implemented in most cases with the <KeySelector> element. In some
specific cases, two additional selector elements are used: <MultiKeySelector> and
<DataReferenceSelector>.

5.2.9 Spec if ic W idget Element At tr ibutes

Apart from the two properties, Label and Help, common to all the widgets and available as
attributes and child elements of widget elements, the latter may have their specific
attributes.

Page 31 of 55 An Advanced Guide to Data Types

Normally, you can set them either in the Field Widget Configuration window or in the form
markup. In some cases, you can only access their attributes in the form markup (for
example, Type of <TextBox>).

The following is the list of the correspondences between the widget property and the widget
element’s attribute or child attribute. If the attribute has no corresponding widget property,
the attribute is element-specific and can be only set in the form markup. A bindable property
can be normally configured as the field’s Default value property.

(The Label and Help attributes are omitted as common to all the elements below.)

<TextBox>

Widget Element Attribute Widget Property Bindable

Text Yes

Type

<TextArea>

Widget Element Attribute Widget Property Bindable

Text Yes

Type

<DateSelector>

Widget Element Attribute Widget Property Bindable

Date Yes

<DateTimeSelector>

Widget Element Attribute Widget Property Bindable

Text Yes

<CheckBox>

Widget Element Attribute Widget Property Bindable

Checked Yes

ItemLabel Sub label

<BoolSelector>

Widget Element Attribute Widget Property Bindable

IsTrue Yes

TrueLabel True label

FalseLabel False label

Page 32 of 55 An Advanced Guide to Data Types

<InlineXhtmlEditor>

Widget Element Attribute Widget Property Bindable

Xhtml Yes

ClassConfigurationName Class configuration name

EmbedableFieldsTypes

<KeySelector>

Widget Element Attribute Widget Property Bindable

Selected Yes

Options Options

OptionsKeyField Source key field name

OptionsLabelField Source label field name

Required Selection required

BindingType

SelectedIndexChangedEv
entHandler

<MultiKeySelector>

Widget Element Attribute Widget Property Bindable

Selected Yes

Options Options

OptionsKeyField Source key field name

OptionsLabelField Source label field name

Required Selection required

CompactMode Compact mode

BindingType

SelectedIndexChangedEv
entHandler

<DataReferenceSelector>

Widget Element Attribute Widget Property Bindable

Selected Yes

DataType

Page 33 of 55 An Advanced Guide to Data Types

It depends on the type of selector widget whether <KeySelector> and <MultiKeySelector>
have their properties available for configuration in the Field Widget Configuration window.
The names of the properties might also differ in the GUI from selector to selector.

5.2.10 Other W idget Elements

If you examine the XML schema definition for form UI controls
(http://www.composite.net/ns/management/bindingforms/std.ui.controls.lib/1.0), you
will notice that it has a number of other elements, for example, <Heading> or
<MarkupEditor>.

Normally, they are not used in regular data type forms and are out of the scope in this guide.

5.3 Customizing TextBox View

The TextBox widget can be customized in both its view and its behavior by setting the Type
attribute of the <TextBox> element in the form markup.

The following values are possible:

<TextBox> Type Attribute Values

Value Description

ReadOnly Makes the text box read-only

Password Hides the input string behind a string of special
characters as used on password fields

String Accepts strings only

Integer Accepts integers only

Decimal Accepts decimals only

Guid Accepts GUIDs only

ProgrammingIdentifier Accepts Programming Identifiers only; normally not
used in data type forms

ProgrammingNamespace Accepts Programming Namespaces only; normally
not used in data type forms

Using these values, you can make the text box widget read-only, hide passwords behind a
string of specific characters, or link it to a specific field type such as an integer or a GUID
leading to validation of its input values.

For example, if you want the text box widget to be read-only:

1. Edit the form markup.
2. Add the Type attribute to the TextBox element.
3. Specify “ReadOnly” as the value in the attribute.
4. Save the form.

When you add a data item, you will see that the text box is now read-only.

Page 34 of 55 An Advanced Guide to Data Types

Note: The TextArea widget also has the Type attribute, but it can only accept the
“ReadOnly” value; other values are only TextBox-specific.

5.4 Using Container Elements

By default, C1 CMS places all the widgets in a field group box. In the form markup, the latter
is represented with the <FieldGroup> element. This is a container element, and therefore
can contain other elements.

In addition to the <FieldGroup> element, you can use two more container elements in the
form markup: <PlaceHolder> and <TabPanels>.

5.4.1 Fie ldGroup Element

The <FieldGroup> container element arranges its elements one below another and places
them in a box. Its primary purpose is - as the name suggests – to group related field
widgets, enhancing usability of the form, as a result.

It has two attributes: Label and Help. By default, it has no attributes specified in the auto-
generated form markup. However, you can use its Label attribute to have a titled group box.

Figure 6: A field group with the label

5.4.2 PlaceHolder Element

The <PlaceHolder> container element is the simplest out of the three. As <FieldGroup>, it
also arranges its elements one below another, but without placing them in a box. It
practically has no visual representation.

It has two attributes: Label and Help. When used alone, the attribute values are not used.
They might become visible when used in combination with other container elements.

<PlaceHolder> keeps the elements within its borders and can be used as a root element in
the <cms:layout> section to arrange several field group boxes.

Figure 7: <PlaceHolder> used to lay out two field groups

You can also use it as a single tab in <TabPanels>.

Page 35 of 55 An Advanced Guide to Data Types

5.4.3 TabPanels Element

The <TabPanels> container element groups widgets on tabs handling a form overloaded
with numerous fields and enhancing its usability, as a result.

It uses its child elements as individual tabs so the best option to choose is a number of
<PlaceHolder> elements as its child elements, each with the actual widgets or group of
widgets within these “tab” place holders.

Figure 8: <TabPanels> used

Apart from its Label and Help attributes, usually not visible in the form GUI, it has its own
specific attribute – PreSelectedIndex – which allows you to pre-select the tab when the
form opens.

The index is zero-based, so if you have 3 tabs on your form, you should set this attribute to
“2” if you want the 3rd tab to be pre-selected.

5.5 Customizing Form Layout

By default, C1 CMS generates a form that displays all its widgets in a group box. To
enhance usability of the form, you can group related widgets using multiple field groups or
you can place groups of field widgets on multiple tabs on a form.

5.5.1 Grouping F ie lds between Mult ip le F ie ld Groups

To be able to use multiple field groups in the same form, you should change the root
element in the <cms:layout> section of the form markup. The best option is
<PlaceHolder>.

Also using two or more field groups implies naming each of the group for easier reference
and better user experience.

1. Edit the form markup.
2. Insert the <PlaceHolder> element in <cms:layout>.
3. Place the current <FieldGroup> element with all its child elements within

<PlaceHolder>.
4. Based on your requirements, add one or more <FieldGroup> elements within

<PlaceHolder>
5. Move the necessary widget elements from the original <FieldGroup> to those you

have just added where appropriate.
6. Add the Label attribute to each <FieldGroup> and use it to name each field group.
7. Save your form.

<PlaceHolder>

 <FieldGroup Label="Required Settings">

 <!-- widget elements go here -->

 </FieldGroup>

 <FieldGroup Label="Optional Settings">

 <!-- widget elements go here -->

 </FieldGroup>

</PlaceHolder>

Listing 12: Multiple field groups

Once the form is saved, you can add an item to the data type it represents and see the
changes in its view.

Page 36 of 55 An Advanced Guide to Data Types

Figure 9: Multiple field groups in the GUI

5.5.2 Grouping F ie lds on Mult ip le Tabs

If you want to group the widgets using tabs, you should change the root element in the
<cms:layout> section of the form markup to the <TabPanels>. Besides, you should create
each tab individually by using <PlaceHolder> elements within <TabPanels>.

As tabs normally have titles, you should also name them. Optionally, you can pre-select a
certain tab when the form opens.

1. Edit the form markup.
2. Insert the <TabPanels> element within <cms:layout>.
3. Within <TabPanels>, insert as many <PlaceHolder> elements as many tabs you

need.
4. Add the Label attribute to each <PlaceHolder> and use it to name each tab.
5. Place the current <FieldGroup> element with all its child elements within the first

<PlaceHolder>.
6. Insert a <FieldGroup> element into the empty <PlaceHolder>.
7. Based on your requirements, move the necessary widget elements from the original

<FieldGroup> in the first <PlaceHolder> to the <FieldGroup> within the empty
<PlaceHolder>.

8. If you have more than two tabs, repeat Steps 6-7.
9. Optionally, you can add the PreSelectedIndex attribute to the <TabPanels>

element and specify its value.
10. Save your form.

<TabPanels>

<PlaceHolder Label="Main">

 <FieldGroup >

 <!-- widget elements go here -->

 </FieldGroup>

</PlaceHolder>

<PlaceHolder Label="Optional">

 <FieldGroup >

 <!-- widget elements go here -->

 </FieldGroup>

</PlaceHolder>

</TabPanels>

Listing 13: Multiple tabs

Once the form is saved, you can add an item to the data type it represents and see the
changes.

Page 37 of 55 An Advanced Guide to Data Types

Figure 10: Multiple tabs in the GUI

You are not limited to one field group on one tab. You can create as many field groups as
you need.

Besides, you can have child tabs on a tab. You just need to add another <TabPanels>
element within one of the <PlaceHolder> elements and repeat the above procedure.

5.6 Example of Editing Form Markup

Let’s assume that you have data type that holds information about user account. Each user
account must have the following fields:

Required personal information

 Username

 Password

 Name

 Email Address (Email)

Optional personal information

 Age

 City

 Country

Service information

 User ID (UserId)

 Account Created (Created)

The requirements to the form are as follows:

 The fields must be distributed between 3 tabs (as it is grouped in the list above):
“Main”, “Optional”, and “Service”.

 The Username and Password fields must be grouped in the Login field group,
the Name and Email Address fields must be grouped in the User Information
field group.

 The password in the Password field should be hidden.

Page 38 of 55 An Advanced Guide to Data Types

 The User ID must be read-only and show the GUID of the user account
generated and assigned when the account was created.

 The Account Created field must be read-only and show the date when the
account was created.

Before changing the form markup, you should specify the default value for the Created field:

1. Select the Created field.
2. On the Advanced tab, click in the Default value field.
3. In the Select Function dialog, select the Composite.Utils.Date.Now function.
4. Click OK in the Select Function dialog and then in the Field Default Value

Configuration.

When the user opens the form to enter values in the fields, the Account Created field will be
already initialized to the current date.

First, let’s see what markup C1 CMS generated by default:

<cms:formdefinition

xmlns:cms="http://www.composite.net/ns/management/bindingforms/1.0"

xmlns="http://www.composite.net/ns/management/bindingforms/std.ui.controls.

lib/1.0"

xmlns:f="http://www.composite.net/ns/management/bindingforms/std.function.l

ib/1.0">

 <cms:bindings>

 <cms:binding name="Id" type="System.Guid" optional="true" />

 <cms:binding name="Username" type="System.String" optional="true" />

 <cms:binding name="Password" type="System.String" optional="true" />

 <cms:binding name="Name" type="System.String" optional="true" />

 <cms:binding name="Email" type="System.String" optional="true" />

 <cms:binding name="Age" type="System.Int32" optional="true" />

 <cms:binding name="City" type="System.Guid" optional="true" />

 <cms:binding name="Country" type="System.Guid" optional="true" />

 <cms:binding name="Created" type="System.DateTime" optional="true" />

 </cms:bindings>

 <cms:layout>

 <cms:layout.label>

 <cms:read source="Name" />

 </cms:layout.label>

 <FieldGroup>

 <TextBox Label="Username" Help="">

 <TextBox.Text>

 <cms:bind source="Username" />

 </TextBox.Text>

 </TextBox>

 <TextBox Label="Password" Help="">

 <TextBox.Text>

 <cms:bind source="Password" />

 </TextBox.Text>

 </TextBox>

 <TextBox Label="Name" Help="">

 <TextBox.Text>

 <cms:bind source="Name" />

 </TextBox.Text>

 </TextBox>

 <TextBox Label="Email Address" Help="">

 <TextBox.Text>

 <cms:bind source="Email" />

 </TextBox.Text>

 </TextBox>

 <TextBox Label="Age" Help="" Type="Integer">

 <TextBox.Text>

 <cms:bind source="Age" />

 </TextBox.Text>

 </TextBox>

Page 39 of 55 An Advanced Guide to Data Types

 <KeySelector Label="City" Help="" OptionsKeyField="Key"

OptionsLabelField="Label" Required="false">

 <KeySelector.Selected>

 <cms:bind source="City" />

 </KeySelector.Selected>

 <KeySelector.Options>

 <f:StaticMethodCall Type="<t

n="Composite.StandardPlugins.Functions.WidgetFunctionProviders.Standar

dWidgetFunctionProvider.DataReference.NullableDataReferenceSelectorWidgetFu

nction`1, Composite, Version=1.2.3610.26719, Culture=neutral,

PublicKeyToken=null">

 <t n="DynamicType:Demo.Cities" />

</t>" Method="GetOptions" Parameters="DynamicType:Demo.Cities" />

 </KeySelector.Options>

 </KeySelector>

 <KeySelector Label="Country" Help="" OptionsKeyField="Key"

OptionsLabelField="Label" Required="false">

 <KeySelector.Selected>

 <cms:bind source="Country" />

 </KeySelector.Selected>

 <KeySelector.Options>

 <f:StaticMethodCall Type="<t

n="Composite.StandardPlugins.Functions.WidgetFunctionProviders.Standar

dWidgetFunctionProvider.DataReference.NullableDataReferenceSelectorWidgetFu

nction`1, Composite, Version=1.2.3610.26719, Culture=neutral,

PublicKeyToken=null">

 <t n="DynamicType:Demo.Countries" />

</t>" Method="GetOptions" Parameters="DynamicType:Demo.Countries" />

 </KeySelector.Options>

 </KeySelector>

 <DateSelector Label="Account Created" Help="">

 <DateSelector.Date>

 <cms:bind source="Created" />

 </DateSelector.Date>

 </DateSelector>

 </FieldGroup>

 </cms:layout>

</cms:formdefinition>

Listing 14: Form markup auto-generated by C1 CMS

All the fields are placed together within one field group.

Page 40 of 55 An Advanced Guide to Data Types

Figure 11: Data item editor form auto-generated by C1 CMS

Now let’s implement the requirements to the form.

<cms:formdefinition

xmlns:cms="http://www.composite.net/ns/management/bindingforms/1.0"

xmlns="http://www.composite.net/ns/management/bindingforms/std.ui.controls.

lib/1.0"

xmlns:f="http://www.composite.net/ns/management/bindingforms/std.function.l

ib/1.0">

 <cms:bindings>

 <cms:binding name="Id" type="System.Guid" optional="true" />

 <cms:binding name="Username" type="System.String" optional="true" />

 <cms:binding name="Password" type="System.String" optional="true" />

 <cms:binding name="Name" type="System.String" optional="true" />

 <cms:binding name="Email" type="System.String" optional="true" />

 <cms:binding name="Age" type="System.Int32" optional="true" />

 <cms:binding name="City" type="System.Guid" optional="true" />

 <cms:binding name="Country" type="System.Guid" optional="true" />

 <cms:binding name="Created" type="System.DateTime" optional="true" />

 </cms:bindings>

 <cms:layout>

 <cms:layout.label>

 <cms:read source="Name" />

Page 41 of 55 An Advanced Guide to Data Types

 </cms:layout.label>

 <TabPanels>

 <PlaceHolder Label="Main">

 <FieldGroup Label="Login">

 <TextBox Label="Username" Help="">

 <TextBox.Text>

 <cms:bind source="Username" />

 </TextBox.Text>

 </TextBox>

 <TextBox Label="Password" Help="" Type="Password">

 <TextBox.Text>

 <cms:bind source="Password" />

 </TextBox.Text>

 </TextBox>

 </FieldGroup>

 <FieldGroup Label="User Information">

 <TextBox Label="Name" Help="">

 <TextBox.Text>

 <cms:bind source="Name" />

 </TextBox.Text>

 </TextBox>

 <TextBox Label="Email Address" Help="">

 <TextBox.Text>

 <cms:bind source="Email" />

 </TextBox.Text>

 </TextBox>

 </FieldGroup>

 </PlaceHolder>

 <PlaceHolder Label="Optional">

 <FieldGroup>

 <TextBox Label="Age" Help="" Type="Integer">

 <TextBox.Text>

 <cms:bind source="Age" />

 </TextBox.Text>

 </TextBox>

 <KeySelector Label="City" Help="" OptionsKeyField="Key"

OptionsLabelField="Label" Required="false">

 <KeySelector.Selected>

 <cms:bind source="City" />

 </KeySelector.Selected>

 <KeySelector.Options>

 <f:StaticMethodCall Type="<t

n="Composite.StandardPlugins.Functions.WidgetFunctionProviders.Standar

dWidgetFunctionProvider.DataReference.NullableDataReferenceSelectorWidgetFu

nction`1, Composite, Version=1.2.3610.26719, Culture=neutral,

PublicKeyToken=null">

 <t n="DynamicType:Demo.Cities" />

</t>" Method="GetOptions" Parameters="DynamicType:Demo.Cities" />

 </KeySelector.Options>

 </KeySelector>

 <KeySelector Label="Country" Help="" OptionsKeyField="Key"

OptionsLabelField="Label" Required="false">

 <KeySelector.Selected>

 <cms:bind source="Country" />

 </KeySelector.Selected>

 <KeySelector.Options>

 <f:StaticMethodCall Type="<t

n="Composite.StandardPlugins.Functions.WidgetFunctionProviders.Standar

dWidgetFunctionProvider.DataReference.NullableDataReferenceSelectorWidgetFu

nction`1, Composite, Version=1.2.3610.26719, Culture=neutral,

PublicKeyToken=null">

 <t n="DynamicType:Demo.Countries" />

</t>" Method="GetOptions" Parameters="DynamicType:Demo.Countries" />

 </KeySelector.Options>

 </KeySelector>

 </FieldGroup>

 </PlaceHolder>

 <PlaceHolder Label="Service">

Page 42 of 55 An Advanced Guide to Data Types

 <FieldGroup>

 <TextBox Label="User ID" Help="" Type="ReadOnly">

 <TextBox.Text>

 <cms:read source="Id" />

 </TextBox.Text>

 </TextBox>

 <TextBox Label="Account Created" Help="" Type="ReadOnly">

 <TextBox.Text>

 <cms:read source="Created" />

 </TextBox.Text>

 </TextBox>

 </FieldGroup>

 </PlaceHolder>

 </TabPanels>

 </cms:layout>

</cms:formdefinition>

Listing 15: Customized form markup

Let’s highlight some of the changes in the markup above. First of all, we have created tabs
and field groups and distributed the existing widgets among them:

1. We have added a <TabPanels> element in the <cms:layout> and inserted 3 child
<PlaceHolder> elements within the <TabPanels> element. We have also added
the Label attribute to each <PlaceHolder> element and set its value to “Main”,
“Optional” and “Service”.

2. We have moved the default <FieldGroup> element with all its child elements to the
Main tab. We have also added the Label attribute to this <FieldGroup> element
and set its value to “Login”.

3. We have added another <FieldGroup> element onto the Main tab, set its Label
attribute to “User Information” and moved 3 widget elements in for these fields:
FirstName, LastName, Email.

4. We have added another <FieldGroup> element onto the Optional tab and moved 3
widget elements in for these fields: Age, City, and Country.

5. We have added another <FieldGroup> element onto the Service tab and moved 1
widget element in for this field: Created.

Next, we have modified the widget elements so that they meet the requirements:

1. We have added the Type attribute to the Password widget element and set its
value to “Password”.

2. We have replaced the <DateSelector> widget element for the Created field with a
<TextBox>. We do not want users to select the date in this widget, and we want
this field to be read-only. That is why we have chosen the <TextBox> for displaying
the value. We have also added the Type attribute to this element and set it to
“ReadOnly”.

3. We have added another <TextBox> element above the Created field, set its Type
attribute to “ReadOnly” and initialized it to the Id field available in the
<cms:bindings>. The Id field is always added by C1 CMS to the data type and
listed in the <cms:bindings>; however, it is never used in the <cms:layout> by
default.

When the user adds a data item and opens this form, it will now look exactly as required.

Page 43 of 55 An Advanced Guide to Data Types

Figure 12: Customized data item editor form (Main tab)

Figure 13: Customized data item editor form (Optional tab)

Figure 14: Customized data item editor form (Service tab)

Page 44 of 55 An Advanced Guide to Data Types

6 Applying Validation Rules to Fields

A validation rule is a criterion to ensure that input data, for example, entered by a user in a
form field is correct, that is, meets this criterion.

You can apply one or more validation rules to a data type field to control the user’s input.

For example, you want to ensure that the user:

 Entered an email address in a corresponding field

 Entered a well-formed email address

In this case, you can apply two validation rules to the field:

 Checking that the field has a value (i.e. “is not null”)

 Validating the string as a well-formed email address with a regular expression

C1 CMS comes with a predefined set of validation rules that you can apply to data type
fields, too.

All the validation rules are available as functions in Composite.Utils.Validation.

Each type of field has its own set of validation rules.

6.1 Adding Validation Rule to Field

To add a validation rule to a field:

1. Edit a data type, and on the Fields tab, select a field to add a validation rule to.
2. On the Advanced tab, click Add Validation Rules. The Field Validation Rules

Configuration window appears.

Figure 15: Field Validation Rules Configuration window

Note: If at least one validation rule has already been added to the field, the button will
read “Edit Validation Rules”.

3. Click Add New. The Select Function window appears.

Page 45 of 55 An Advanced Guide to Data Types

Figure 16: Select Function window

Note: If no validation rules have been previously added to the field, this window will pop
up automatically after Step 3.

4. Expand All Functions > Composite > Utils > Validation, select the validation rule
you want to use on the field and click OK.

5. If the validation rule requires that its parameters should be configured, enter the
proper values.

Page 46 of 55 An Advanced Guide to Data Types

Figure 17: Setting parameters of a validation rule

6. Click OK to save changes and close the Field Validation Rules Configuration

window.

You have just added a validation rule to the field.

6.1.1 Edi t ing Val idat ion Rule

Note: You can only edit a validation rule that has parameters.

To edit a validation rule:

1. Edit a data type and on the Fields tab, select a field for which you want to edit a
validation rule.

2. On the Advanced tab, click Edit Validation Rules. The Field Validation Rules
Configuration window appears.

3. Select the validation rule you want to edit and modify its parameters where
necessary.

4. Click OK to save changes and close the Field Validation Rules Configuration
window.

You have just modified a validation rule for the field.

6.1.2 Delet ing Val idat ion Rule

To delete a validation rule:

1. Edit a data type and on the Fields tab, select a field from which you want to delete
a validation rule.

2. On the Advanced tab, click Edit Validation Rules. The Field Validation Rules
Configuration window appears.

3. Select the validation rule you want to delete and click Delete.

Page 47 of 55 An Advanced Guide to Data Types

4. Click OK to save changes and close the Field Validation Rules Configuration
window.

You have just deleted a validation rule from the field.

6.2 Overview of Validation Rules

Except the Boolean and Data Reference types, each field type has its own set of validation
rules.

The Boolean type has no validation rules. The Data Reference type reuses the String’s
validation rules.

Most data types has one common validation rule – the one that ensures that the value is not
null.

6.2.1 DateTime

DateTimeNotNullValidat ion

This rule ensures that the input value has been entered and is therefore not null.

6.2.2 Dec imal

DecimalNotNullValidation

This rule ensures that the input value has been entered and is therefore not null.

DecimalPrecisionVal idat ion

This rule validates the precision of digits, that is, the number of decimals the user has
specified). It has one required parameter:

MaxDigits

An Int32 value that specifies the maximum number of digits allowed on the decimal.

6.2.3 GUID

GuidNotNullValidat ion

This rule ensures that the input value has been entered and is therefore not null.

6.2.4 Int32

Int32NotNullValidat ion

This rule ensures that the input value has been entered and is therefore not null.

IntegerRangeValidat ion

This rule validates that an integer lies within a range of values specified in its two required
parameters:

min

An Int32 value that specifies the minimum number allowed in this field.

max

Page 48 of 55 An Advanced Guide to Data Types

An Int32 value that specifies the maximum number allowed in this field.

6.2.5 Str ing and Data References

StringNotNullVal idation

This rule ensures that the input value has been entered and is therefore not null.

RegularExpressionValidation

This rule validates that a string conforms to the regular expression specified in its required
parameter:

Pattern

A string value that holds the regular expression pattern to use.

StringLengthValidat ion

This rule validates that the length of a string lies within a range specified in its two required
parameters:

min

An Int32 value that specifies the minimum number of characters allowed in this field.

max

An Int32 value that specifies the maximum number of characters allowed in this
field.

6.3 Example of Using Validation Rules

Let’s assume that you have a simple registration form with two fields: Name and Email
Address.

You want the name the user should enter in the corresponding field to be no longer than 8
characters. You also want the email address to be well-formed.

You have a global data type called “Users” with the respective two string fields. Let’s see
how you should meet the requirements by applying validation rules to both fields.

First, you have to limit the number of characters in the Name field to 8:

1. Edit a data type and on the Fields tab select the Name field.
2. On the Advanced tab, click Add Validation Rules.
3. In the Select Function window expand All Functions > Composite > Utils >

Validation.
4. Select StringLengthValidation and click OK.
5. In the Field Validation Rules Configuration window, set the Minimum length

parameter to 1 and the Maximum length parameter to 8 and click OK.

Note: If the Select Function window has not popped up over the Field Validation Rules
Configuration window in Step 3, you should click Add New.

Next, you have to ensure that an email address entered is well-formed.

1. Select the Email Address field and on the Advanced tab, click Add Validation
Rules.

2. In the Select Function window expand All Functions > Composite > Utils >
Validation.

3. Select RegularExpressionValidation and click OK.

Page 49 of 55 An Advanced Guide to Data Types

4. In the Field Validation Rules Configuration window, set the RegEx pattern
parameter to “^([a-zA-Z0-9_\-\.]+)@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,3})$” (without
quotation marks) and click OK.

5. Save the data type.

Now try to enter values in the Registration form by using the values that both meet and do
not meet the requirements and see how the validation works.

6.4 Making Validation Messages on Forms User -Friendly

Note: The following information is applicable to the web forms generated by Forms
Renderer.

The field validation on a form may fail because the value in the field does not meet
requirements. You specify the requirements for the value when you either set properties of
the field (for example, Field type or Required) or apply validation rules.

In both cases, if the validation fails, a validation error message appears on the form. By
default, the Forms Renderer uses built-in system messages, which may be quite technical
and not always appropriate on the form.

You can make the message user-friendly by replacing the system message with your own
message. In this case, if the field validation fails, the user-friendly message will be displayed
on the form instead.

When you specify the Help text for a field of a data type, the Forms Renderer uses this text
for a validation message on a form.

To make a validation message for a field user-friendly:

1. Edit the data type used by the Forms Renderer.
2. Open the Fields tab and select a field under the Datatype fields.
3. Type some user-friendly text in the Help property.
4. Repeat Steps 2-3 for each field.
5. Save the data type.

Page 50 of 55 An Advanced Guide to Data Types

7 Creating Data Types That Reference Other Data
Types

One of the ways to make data entry error-proof and faster is to use lists of predefined values
in fields instead of having users type their own values.

C1 CMS allows you to create data types with fields that reference other data types for a set
of fixed values.

First, you should create a “referenced” data type, that is, a data type that will hold values for
another data type.

Next, you should add data items to this data type. The data items will serve as values to
select from in a field.

Finally, you should create or edit a “referencing” data type, that is, a data type that will use
the values from the “referenced” data type, and add a special field for these values.

For example, you can have a data type for information about car makes and models
(“Cars”). One of its fields (“Manufacturer”) stores the name of the company that makes a
specific car.

When information about a car is added to the data type, instead of typing the company
name in the field, the user selects the existing name from the drop-down list. And these
company names are supplied by another data type.

In the following sections you will learn how to create such data types.

7.1 Creating Referenced Data Types

A referenced data type is the data type that supplies values for a Data Reference field in
another data type.

The procedure of creating a referenced data type is the same as the general procedure for
creating a data type. (Pease see A Guide to Creating Data Types.)

This data type may have only one field, the values of which will be used as values in a
referencing data type.

If the referenced data type has more than one field, one of the fields will be used to provide
values. This is normally a field set to be a “”title” field for a data type.

Figure 18: Assigning a title field

Once you have created the referenced data type, you should add data items to it.

7.2 Creating Referencing Data Types

A referencing data type is the data type that uses data items of another data type as values
in one of its field. This field must be of the Data Reference type and its reference type must
be set to the referenced data type.

To create a referencing data type:

Page 51 of 55 An Advanced Guide to Data Types

1. Create or edit a data type (e.g. “Cars”).
2. Add a field of the Data Reference type (for example, “Manufacturer”).
3. In the Reference Type field, select the data type that will supply predefined values

for this field.
4. Save the data type.

If this field is required, the Selector widget is used. If the field is optional, the
OptionalSelector is used instead. The latter allows the user not to choose any value in this
field. It appears on the drop-down list as the <NONE> option and is pre-selected by default.

When the user adds a data item to the data type, he or she will be able to choose a value
from the selector. Each value is a separate data item in the referenced data type.

7.3 Grouping by Data Reference Fields

When using data types that reference other data types, you can create hierarchies of data
items within these data types. These hierarchies can significantly help users in both locating
existing items and adding new items.

Locating a data item in a hierarchy implies locating it within a specific group. Adding an item
under a specific group within a data type initializes its values to those pre-defined by the
group.

For example, the Cars data type might have many data items already added. In a “flat” view,
each data item representing a car model will be placed immediately under the Cars data
type in the Data navigator.

Figure 19: Data items listed in a “flat” view

Page 52 of 55 An Advanced Guide to Data Types

You can however group the car models first by their manufacturers, and then by their brand
names.

Figure 20: Data items listed hierarchically

To group data items within data types:

1. Edit a data type.
2. Select a field you want to serve as Level 1 grouping category for data items. This

should be a field that references a data type, which serves as a category or type for
a data item. For example, in the Cars data type, it might be the Manufacturer field
that references the Manufacturers data type.

3. On the Advanced tab, in the Field grouping dropdown list, select Group by this
field.

4. Save the data type.

Page 53 of 55 An Advanced Guide to Data Types

If you need more levels in the hierarchy, repeat the above procedure. When setting a field to
serve as the Level 2 grouping category, select Group as 2. priority. For example, in the Cars
data type, it might be the Brand field that references the Brands data type.

Page 54 of 55 An Advanced Guide to Data Types

8 Test Your Knowledge

8.1 TASK 1

1. Create a data type called “Contacts”
2. Add the following fields: First Name, Last Name, Age, Marital Status, Street, City,

Phone, Email, Website.
3. Add a few items.
4. Localize the data type. Localize the data items where necessary.

8.2 TASK 2

1. Apply a validation rule on the Age field that allows integers between 21 and 75.
2. Apply a validation rule on the Email field to allow only well-formed email addresses.
3. Apply a validation rule on the Website field to allow only well-formed URLs (starting

with “http://” and including valid top-level domains such as “.com”)

8.3 TASK 3

1. Create another data type called “Instant Messaging”.
2. Add the field and name it “Application”.
3. Add the following data items to the data type: ICQ, MSN, Skype, Yahoo, AIM.
4. In the data type created in Task 1, add another field of the String type: IM.
5. Reference the Instant Messaging data type as its field type.

8.4 TASK 4

1. Edit the Contacts data type and select the IM field.
2. Change its type from Data Reference to String.
3. Replace the default TextBox widget with DataIdMultiSelector.
4. Set the Data type to select from property to the Instant Messaging data type.
5. Save the data type, add an item and see what widget is used for the IM field.

8.5 TASK 5

1. Edit the widget for the IM field again and set its Compact UI property to Compact.
2. Save the data type, add an item and see what widget is used for the IM field now.

Page 55 of 55 An Advanced Guide to Data Types

8.6 TASK 6

1. Use the Forms Renderer add-on to create a web form based on the Contact data
type.

2. Create.NET resource files for the form for the main language and another language.
3. Add strings to the resource files for form labels and help texts in a proper language.
4. Use the resource string in the data type’s corresponding field properties.
5. Open the page with the form and see if the form’s labels are in the main languages
6. Switch to the localized version of the website and see if the form’s labels are in the

other language.

8.7 TASK 7

1. Edit the form markup of the Contacts data type.
2. Place the First Name, Last Name fields in the Name field group and Age and Marital

Status in the Personal Information field group.
3. Place these 4 fields on the Person tab.
4. Place the Street and City in the Address field group and Phone, Email, Website, IM

in the Communication field group.
5. Place these 6 fields on the Contact Information tab.

http://docs.c1.orckestra.com/Composite.Forms.Renderer

	1 Introduction
	1.1 Who Should Read This Guide?
	1.2 Getting Started
	1.3 Terms and Abbreviations

	2 Localizing Data Types
	2.1 Enabling Localization on Data Types
	2.1.1 Localizing Existing Data Types
	2.1.2 Localizing Data Types Being Created

	2.2 Localizing Data Items
	2.3 Troubleshooting

	3 Localizing Forms
	3.1 Creating Resource File for Main Language
	3.2 Creating Resource Files for Other Languages
	3.3 Translating Strings in Localized Resource Files
	3.4 Using Resource Strings in Data Type Field Properties
	3.5 Troubleshooting

	4 Using Advanced Widgets
	4.1 TextBox
	4.2 TextArea
	4.3 CheckBox
	4.4 BoolSelector
	4.5 VisualXhtmlEditor
	4.6 DataIdMultiSelector
	4.7 Selector (String)
	4.8 ImageSelector
	4.9 MediaFileSelector

	5 Editing Form Markup
	5.1 Editing Form Markup
	5.1.1 XHTML Validation
	5.1.2 Form Markup File

	5.2 Overview of Form XML Structure
	5.2.1 Required XML Namespaces
	5.2.2 Default Form XML Structure
	Bindings Section
	Layout Section

	5.2.3 Root Element in Layout Section
	5.2.4 Widget Elements
	5.2.5 Common Attributes
	5.2.6 Initializing Widgets
	5.2.7 Binding Fields to Widgets
	5.2.8 Commonly Used Widget Elements
	5.2.9 Specific Widget Element Attributes
	5.2.10 Other Widget Elements

	5.3 Customizing TextBox View
	5.4 Using Container Elements
	5.4.1 FieldGroup Element
	5.4.2 PlaceHolder Element
	5.4.3 TabPanels Element

	5.5 Customizing Form Layout
	5.5.1 Grouping Fields between Multiple Field Groups
	5.5.2 Grouping Fields on Multiple Tabs

	5.6 Example of Editing Form Markup

	6 Applying Validation Rules to Fields
	6.1 Adding Validation Rule to Field
	6.1.1 Editing Validation Rule
	6.1.2 Deleting Validation Rule

	6.2 Overview of Validation Rules
	6.2.1 DateTime
	DateTimeNotNullValidation

	6.2.2 Decimal
	DecimalNotNullValidation
	DecimalPrecisionValidation

	6.2.3 GUID
	GuidNotNullValidation

	6.2.4 Int32
	Int32NotNullValidation
	IntegerRangeValidation

	6.2.5 String and Data References
	StringNotNullValidation
	RegularExpressionValidation
	StringLengthValidation

	6.3 Example of Using Validation Rules
	6.4 Making Validation Messages on Forms User-Friendly

	7 Creating Data Types That Reference Other Data Types
	7.1 Creating Referenced Data Types
	7.2 Creating Referencing Data Types
	7.3 Grouping by Data Reference Fields

	8 Test Your Knowledge
	8.1 TASK 1
	8.2 TASK 2
	8.3 TASK 3
	8.4 TASK 4
	8.5 TASK 5
	8.6 TASK 6
	8.7 TASK 7

